标题    全文    标题或全文  |   精确查询    模糊查询
标题:
全文:
期刊名称:
全部
作者:
作者单位:
关键词:
期刊年份:
全部
期号:
学科分类:
全部
搜索 清空
基于增量学习的安检X光图像违禁品检测
《警察技术》
2024年
6
79-83
李斌;张熠卿;毕翔;金川
公安部第一研究所;山东省机场管理集团烟台国际机场有限公司
针对开放域的安检X光图像违禁品检测难题,在YOLOv8系列模型基础上,从模型结构、训练策略和损失函数三个角度创新性地融入增量学习算法.通过设计一种新颖的蒸馏损失函数,促使新模型从旧模型中保留旧类别信息的同时,学习新类别知识,抵抗灾难性遗忘.通过在PIDray和CLCXray两个公开的安检X光图像数据集上进行实验,其结果表明:增量训练后的YOLOv8系列模型在新类别数据上的平均识别精度均超过了70%,而在旧类别数据上的平均识别精度仅降低约10%,并且具有更高的训练效率.
安检X光图像        增量学习        违禁品检测
保存检索条件
X
添加标签:

给这组订阅条件设置标签名称,可以更加方便您管理和查看。

保存条件:
微信“扫一扫”
法信App“扫一扫”
操作提示
对不起,您尚未登录,不能进行此操作!
关联法条X